A-PDF MERGER DEMO

B. Math. I Year 2001-2002 I Semester Final Exam Analysis I

Date:19-11-2001

Marks: 50

Part A (10 marks)

In what follows $f: \mathbb{R} \to \mathbb{R}$ is continuous. Decide if the following statements are true for all continuous functions f. If true, you need not give a proof; if false indicate so by giving a counter example.

- 1. f(G) is open whenver G is,
- 2. $f^{-1}(G)$ is open whenever G is,
- 3. $f^{-1}(F)$ is closed whenever F is,
- 4. f(F) is closed whenever F is,
- 5. f(K) is compact whenever K is,
- 6. $f^{-1}(K)$ is bounded whenever K is,
- 7. $(f(x_n))$ is Cauchy whenever (x_n) is,
 - 8. f(E) is dense in R whenever E is,
 - 9. f(E) is connected whenever E is,
 - 10. $f^{-1}(E)$ is an open interval whenever E is,

Part B (40 marks)

1. Find all functions $f: \mathbb{R} \to \mathbb{R}$ which are differentiable at x=0 such that

$$f(x+y) = f(x) + f(y), x, y \in \mathbb{R}.$$

[4]

- 2. If $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive monotonically decreasing terms show that $na_n \to 0$ as $n \to \infty$.
- 3. Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies the condition

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$

for all $x, y \in \mathbb{R}, \alpha, \beta \in [0, 1], \alpha + \beta = 1$. Show that f is continuous. [4]

- 4. Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent. Find the sum. [2]
- 5. If $f \in C[0,1]$, $f(x) \ge 0$ for $(a)x \in [0,1]$ and if $\int_{0}^{1} f(x)dx = 0$ then show that f(x) = 0 for all $x \in [0,1]$.
- 6. Given a closed set $E \subset \mathbb{R}$ show that there exists a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that $E = \{x: g(x) = 0\}$. [3]
- 7. Show that every $f:[0,1] \to [0,1]$ which is continuous has a fixed point: i.e. there is a point $a \in [0,1]$ such that f(a) = a. [4]
- 8. Show that every continuous function $g: \mathbb{R} \to \mathbb{R}$ which takes open sets into open sets is monotonic. [5]
- 9. Suppose $f \in C[0, 1]$ is such that

$$\int_{0}^{1} f(x)x^{n}dx = 0, n = 0, 1, 2, \dots$$

Show that f(x) = 0 for all $x \in [0, 1]$. [6]

10. Let $\mathcal{P}[0,1]$ is the set of all polynomials restricted to [0,1]. Show that f(x) = x(1-x) is not an interior point of $\mathcal{P}[0,1]$ in C[0,1]. What is the interior of $\mathcal{P}[0,1]$?